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A formal synthesis to (+)-nephrosteranic acid from chiral nitroalkyl derivatives

Cleber B. Barreto Jr., Vera L. Patrocinio Pereira *

Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Bloco H, CCS, Ilha do Fundão, Rio de Janeiro, RJ 21941-590, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 July 2009
Revised 24 August 2009
Accepted 25 August 2009
Available online 29 August 2009
0040-4039/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.tetlet.2009.08.087

* Corresponding author. Tel.: +55 21 2562 6792; fa
E-mail address: patrocinio@nppn.ufrj.br (V.L.P. Per
A concise and versatile formal synthesis to (+)-nephrosteranic acid was accomplished from a common
nitroderivative 2 in a sequence of six steps. The adduct 2 was obtained via a highly syn-diastereoselective
conjugate addition of 1-dodecyl nitronate ion to chiral enoate Z-5 (yield = 80%; de = 95%), derived from
D-(+)-mannitol.

� 2009 Elsevier Ltd. All rights reserved.
(+)-Nephrosteranic acid belongs to the paraconic acid family
which is involved in many important biological activities including
antitumor,1 antifungal,2 antibacterial,2,3 and anti-inflammatorial.4

Structurally, this family comprises a carboxyl group in C-4 posi-
tion, a methyl or methylene group in C-3 position and different al-
kyl substituents in C-5 position in varied spatial arrangements. A
double bond between C-3 and C-4 is also encountered (Fig. 1).

Today, nearly 25 different paraconic acids have been isolated
from diverse natural sources,5 such as various species of mosses, li-
chens, and fungus. Interestingly, some paraconic acids were iso-
lated in both enantiomeric forms.5a

There are a number of racemic6 as well as enantioselective to-
tal7–10 and formal syntheses11 to paraconic acids that utilize dis-
tinct synthetic strategies.

Based on our strategy, which utilizes chiral nitroderivatives ob-
tained via chiron approach as useful synthetic intermediates in
natural products syntheses, we report a versatile and concise route
for the formal synthesis of (+)-nephrosteranic acid from nitroderiv-
ative 2, obtained from D-(+)-mannitol (Scheme 1).

We hypothesized that (+)-nephrosteranic acid precursor 1 could
be synthesized via a transformation of the 1,2-diacetonide group of
4 in the necessary carboxyl group by a one-pot sequence (depro-
tection, vicinal diol oxidative cleavage and oxidation of the corre-
sponding formed aldehyde). On the other hand, the intermediate
4 would be obtained via one-pot sequence involving the anti-dia-
stereoselective reduction of keto function of 3 with simultaneous
lactonization. The b-acylester 3 would be formed via an oxidative
Nef reaction12,13 of the intermediate 2. This would be synthesized
via a syn-selective conjugate addition of 1-dodecyl nitronate anion
to the known Z-enoate 5,14 obtained from D-(+)-mannitol, similar
to that described by us.15

Initially the nitroderivative 2 was synthesized via a syn-stereo-
selective conjugate addition of 1-dodecyl nitronate anion, gener-
ated by treatment of 1-nitrododecane (6)16 with DBU (1 equiv),
ll rights reserved.
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to Z-enoate 5. This was easily synthesized from D-(+)-mannitol in
three steps.14 As expected,15b 2 was obtained in high de (95%) at
the C-3 stereocenter and as a mixture of epimers at C–NO2 stereo-
center (1.0:1.2) (Scheme 2).

The syn stereochemistry of 2 was unambiguously determined by
transformation of the mixture of nitroderivatives 2 in the butyrolac-
tone 721 (Scheme 2). As previously reported,15b,15c the cis-relation-
ship between H-3 and H-4 in lactone 7, and thus the
syn-stereochemistry in adduct 2, was determined by the coupling
constant (J3,4) 7.8 Hz and confirmed by NOE effect. Irradiation at H-4
(d 4.58) led to an enhancement of 2.6% in intensity of H-3 (d 3.48).

To explain the kinetic syn-selectivity in 2, we proposed a
twisted antiperiplanar approach15b of the nitronate anion to the
less hindered enoate Re face of the Felkin-Anh type transition state
model A17 (Fig. 2). The attack of the prochiral re face of the nitro-
nate ion to Z-5 should be more favorable since the more bulky
group (–C11H23) of the incoming nucleophile assumes the less hin-
dered outside position. In this manner, an additional stereocenter
bearing the nitro group (C–NO2) with the S stereochemistry should
be formed. However, due to fast equilibration in the basic media,
this stereochemical information is lost and an epimeric mixture
is obtained.

Scheme 3 shows the steps of conversion of 2 in 1. Thus, the
transformation of 2 into ketone 3 was accomplished, in 71% yield
and de = 95%, using the Nef reaction. Several protocols were inves-
tigated and Gissot’s protocol (NaNO2 2.0 equiv/DMSO:H2O/60 �C)13

was used. Initially, this protocol furnished the ketone 3 in 40% yield
and the corresponding oxime derivative as a byproduct in 25%
yield. After a small modification (NaNO2, 6 equiv was used instead
2 equiv), we were able to obtain the ketone in high yield without
the formation of byproducts. Gissot’s protocol beyond leading to
the best yield, utilizes a neutral medium that inhibits a possible
epimerization in the C-3 stereocenter.

The diastereoselective reduction of keto group of 3 was accom-
plished using sodium borohydride in THF, in the presence of
MnCl2

18 as a metal-chelating agent leading to the direct production
(reduction followed by lactonization) of lactone derivative 4 in 84%
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yield as an epimeric ratio at C4 of 3:1. Other reductive systems
were investigated (NaBH4, NaBH4/CeCl3, K-Selectride, and DIBAL)19

but were found to be less selective. Treatment of ketal derivative 4
with periodic acid (H5IO6 4.0 equiv) led to the corresponding diol
which suffered subsequent oxidative cleavage to necessary alde-
hyde. This was oxidized to (+)-nephrosteranic acid precursor 1
via the addition of catalytic amount of PCC (0.02 mol) using the
remaining periodic acid of the media as reoxidant.20 The three
steps were processed in one-pot, in a global 70% yield with main-
tenance of the trans-stereoselectivity.

Due to the low stereoselectivity obtained in the reduction step
of 3, we propose as an alternative modification in the route origi-
nally imagined to 1 (Scheme 4). Thus, 1 could be synthesized from
diol derivative 9 by a similar sequence employed in 4 (vicinal diol
oxidative cleavage and the oxidation of the corresponding alde-
hyde formed). On the other hand, 9 would be obtained by an
anti-diastereoselective reduction of the keto-derivative 8, followed
by a translactonization mediated by acid. Finally, 8 would be ob-
tained from a common intermediate 2 via a lactonization step fol-
lowed by a Nef reaction.
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Thus, as proposed the mixture of butyrolactones 7 obtained
from lactonization of 2 (Scheme 2) was submitted to Nef reaction
using Gissot’s protocol leading to keto-butyrolactone derivative 8
(J3,4 = 6.4 Hz) in equilibrium with its furanosidic form 10, in 77%
yield and diastereoisomeric excess of 95% (Scheme 5). The keto
group in 8 was diastereoselectively reduced with the use of the
chiral hydride NaBH2 (mannitol diacetonide) 1122 prepared in
80% yield from D-(+)-mannitol diacetonide/NaBH4/THF/2 h/rt. As
verified by 1H NMR, a mixture of butyrolactones 9 and 12 was
formed in 90% yield as an epimeric ratio at C10 of 6:1 (R:S). The
butyrolactone mixture was reacted, in one-pot, with H5IO6 (1 h)
and then with a catalytic amount of PCC (0.02% mol, 1 h) to pro-
duce the desired (+)-nephrosteranic acid precursor 123 in 75% yield
and 85.7% de. The confirmation of the chemical stereostructure to 1
was accomplished by comparison with spectroscopic data of the
same compound synthesized via the first route. A separation of
the diastereoisomeric mixture of 1 could be accomplished in a sim-
ilar manner described by Barros7d or Amador9e through esterifica-
tion and chromatography separation. As already related,7d,8a a
trans-stereoselective introduction of methyl group at a-carbonyl
position of 1 will lead to the total synthesis of (+)-nephrosteranic
acid.

The advantages of this route include the use of the readily avail-
able and inexpensive starting materials and operational simplicity
besides the potential to obtain different paraconic acids, whereas
varied carbonic chains can be efficiently introduced at Z-enoate 5
using the conjugate addition of different nitronate anions, in high
syn-diastereoselectivity and good yields. Whereas both enantio-
meric forms of acceptor 5 can be easily obtained from natural vita-
min C24 or D-(+)-mannitol14 both enantiomers of paraconic acids
can also be synthesized. On the other hand, the reduction step
can be directed to the necessary stereochemistry using diverse
commercial chiral hydrides.
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81.90, 45.35, 35.33, 31.86, 29.55, 29.46, 29.35, 29.28, 29.14, 25.13, 22.63, 14.05
IR (KBr): 3133, 2955, 2921, 2851, 1749, 1238, 721. MS (70 eV) m/z (%): 266
(([M+]-18, 5), 238 (10), 225 (10), 140 (20), 127 (30), 118 (50), 101 (65), 83 (50),
55 (100).

24. (a) Hubschwerlen, C. Synthesis 1986, 962–964; (b) Hubschwerlen, C.; Specklin,
J. L.; Higelin, J. Org. Synth. 1995, 72, 1–5.


